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Abstract. This paper makes a first attempt to bring the Shape from
Polarization (SfP) problem to the realm of deep learning. The previous
state-of-the-art methods for SfP have been purely physics-based. We see
value in these principled models, and blend these physical models as pri-
ors into a neural network architecture. This proposed approach achieves
results that exceed the previous state-of-the-art on a challenging dataset
we introduce. This dataset consists of polarization images taken over
a range of object textures, paints, and lighting conditions. We report
that our proposed method achieves the lowest test error on each tested
condition in our dataset, showing the value of blending data-driven and
physics-driven approaches.
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1 Introduction

While deep learning has revolutionized many areas of computer vision, the deep
learning revolution has not yet been studied in context of Shape from Polariza-
tion (SfP). The SfP problem is fascinating because, if successful, shape could be
obtained in completely passive lighting conditions without estimating lighting
direction. Recent progress in CMOS sensors has spawned machine vision cameras
that capture the required polarization information in a single shot [42], making
the capture process more relaxed than photometric stereo.

This SfP problem can be stated simply: light that reflects off an object has a
polarization state that corresponds to shape. In reality, the underlying physics
is among the most optically complex of all computer vision problems. For this
reason, previous SfP methods have high error rates (in context of mean angular
error (MAE) of surface normal estimation), and limited generalization to mixed
materials and lighting conditions.

* Equal contribution.
** Corresponding authors.
Project page: https://visual.ee.ucla.edu/deepsfp.htm
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Table 1. Deep SfP vs Previous Methods. We compare the input constraints and
result quality of the proposed hybrid of physics and learning compared to previous,
physics-based SfP methods.

Mean Angular Robustness to Lighting

Rlets RERULE Error Texture-Copy Invariance
Miyazaki [37] Polarization Images High Strong Moderate
Mahmoud [33] Polarization Images High Not Observed Moderate

. Polarization Images
Smith [52] Lighting Estimate Moderate Strong Moderate
Proposed  Polarization Images Lowest Strong Strong

The physics of SfP are based on the Fresnel Equations. These equations lead
to an underdetermined system— the so-called ambiguity problem. This problem
arises because a linear polarizer cannot distinguish between polarized light that is
rotated by m radians. This results in two confounding estimates for azimuth angle
at each pixel. Previous work in SfP has used additional information to constrain
the ambiguity problem. For instance, Smith et al. [51] use both polarization and
shading constraints as linear equations when solving object depth, and Mah-
moud et al. [33] use shape from shading constraints to correct the ambiguities.
Other authors assume surface convexity to constrain the azimuth angle [4,37]
or use a coarse depth map to constrain the ambiguity [21,22]. There are also
additional binary ambiguities based on reflection type, as discussed in [4, 33].
Table 1 compares our proposed technique with prior work.

Another contributing factor to the underdetermined nature of SfP is the
refractive problem. SfP needs knowledge of per-pixel refractive indices. Previous
work has used hard-coded values to estimate the refractive index of scenes [37].
This leads to a relative shape recovered with refractive distortion.

Yet another limitation of the physical model is particular susceptibility to
noise. The polarization signal is very subtle for fronto-parallel geometries so it
is important that the input images are relatively noise-free. Unfortunately, a
polarizing filter reduces the captured light intensity by 50 percent, worsening
the effects of Poisson shot noise, encouraging a noise tolerant SfP algorithm.?

In this paper, we address these SfP pitfalls by moving away from a physics-
only solution, toward the realm of data-driven techniques. While it is tempting
to apply traditional deep learning models to the SfP problem, we find this ap-
proach does not maximize performance. Instead, we propose a physics-based
learning algorithm that not only outperforms traditional deep learning, but also
outperforms three baseline comparisons to physics-based SfP. We summarize our
contributions as follows:

e a first attempt to apply deep learning techniques to solve the SfP problem;
e incorporation of the existing physical model into the deep learning approach;
e demonstration of significant error reduction; and

! For a detailed discussion of other sources of noise please refer to Schechner [47].
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e introduction of the first polarization image dataset with ground truth shape,
laying a foundation for future data-driven methods.

Limitations: As a physics-based learning approach, our technique still relies
on computing the physical priors for every test example. This means that the
per-frame runtime would be the sum of the compute time for the forward pass
and that of the physics-based prior. Our runtime details are in the supplement.
Future work could parallelize compute of the physical prior. Another limitation
pertains to the accuracy inherent to SfP. Our average MAE on the test set is
18.5 degrees. While this is the best SfP performer on our challenging dataset, the
error is higher than with a more controlled technique like photometric stereo.

2 Related Work

Polarization cues have been employed for various tasks, such as reflectometry
estimation [12], radiometric calibration [58], facial geometry reconstruction [13],
dynamic interferometry [32], polarimetric spatially varying surface reflectance
functions (SVBRDF) recovery [5], and object shape acquisition [14, 31,43, 64].
This paper is at the seamline of deep learning and SfP, offering unique perfor-
mance tradeoffs from prior work. Refer to Table 1 for an overview.

Shape from Polarization infers the shape (usually represented in surface nor-
mals) of a surface by observing the correlated changes of image intensity with the
polarization information. Changes of polarization information could be captured
by rotating a linear polarizer in front of an ordinary camera [2,60] or polarization
cameras using a single shot in real time (e.g., PolarM [42] in [62]). Conventional
SfP decodes such information to recover the surface normal up to some ambigu-
ity. If only images with different polarization information are available, heuristic
priors such as the surface normals along the boundary and convexity of the
objects are employed to remove the ambiguity [4,37]. Photometric constraints
from shape from shading [33] and photometric stereo [1,11,39] complements
polarization constraints to make the normal estimates unique. If multi-spectral
measurements are available, surface normal and its refractive index could be
estimated at the same time [16,17]. More recently, a joint formulation of shape
from shading and SfP in a linear manner is shown to be able to directly estimate
the depth of the surface [51,52,59]. This paper is the first attempt at combining
deep learning and SfP.

Polarized 3D involves stronger assumptions than SfP and has different in-
puts and outputs. Recognizing that SfP alone is a limited technique, the Po-
larized 3D class of methods integrate SfP with a low resolution depth estimate.
This additional constraint allows not just recovery of shape but also a high-
quality 3D model. The low resolution depth could be achieved by employing
two-view [3,6,35], three-view [8], multi-view [9, 36] stereo, or even in real time
by using a SLAM system [62]. These depth estimates from geometric methods are
not reliable in textureless regions where finding correspondence for triangulation
is difficult. Polarimetric cues could be jointly used to improve such unreliable
depth estimates to obtain a more complete shape estimation. A depth sensor
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such as the Kinect can also provide coarse depth prior to disambiguate the am-
biguous normal estimates given by SfP [21,22]. The key step that characterizes
Polarized 3D is a holistic approach that rethinks both SfP and the depth-normal
fusion process. The main limitation of Polarized 3D is the strong requirement of
a coarse depth map, which is not true for our proposed technique.
Data-driven computational imaging approaches draw much attention in
recent years thanks to the powerful modeling ability of deep neural networks.
Various types of convolutional neural networks (CNNs) are designed to enable 3D
imaging for many types of sensors and measurements. From single photon sensor
measurements, a multi-scale denoising and upsampling CNN is proposed to refine
depth estimates [28]. CNNs also show advantage in solving phase unwrapping,
multipath interference, and denoising jointly from raw time-of-flight measure-
ments [34,54]. From multi-directional lighting measurements, a fully-connected
network is proposed to solve photometric stereo for general reflectance with a
pre-defined set of light directions [45]. Then the fully convolutional network with
an order-agnostic max-pooling operation [7] and the observation map invariant
to the number and permutation of the images [18] are concurrently proposed to
deal with an arbitrary set of light directions. Normal estimates from photometric
stereo can also be learned in an unsupervised manner by minimizing reconstruc-
tion loss [57]. Other than 3D imaging, deep learning has helped solve several
inverse problems in the field of computational imaging [30,46,55,56]. Separation
of shape, reflectance and illuminance maps for wild facial images can be achieved
with the CNNs as well [48]. CNNs also exhibit potential for modeling SVBRDF
of a near-planar surface [10,25,26,63], and more complex objects [27]. The chal-
lenge with existing deep learning frameworks is that they do not leverage the
unique physics of polarization.

3 Proposed Method

In this section, we first introduce basic knowledge of SfP, and then present our
physics-based CNN. Blending physics and deep learning improves the perfor-
mance and generalizability of the method.

3.1 Image formation and physical solution

Our objective is to reconstruct surface normals N from a set of polarization
images {I4,, Ip,, -.., 14, } with different polarization angles. For a specific
polarization angle ¢, the intensity at a pixel of a captured image follows a
sinusoidal variation under unpolarized illumination:

Imam + Imzn Imax -
+

' I cos(2(dpor — 9)) 1)

I(¢pol) =

where ¢ denotes the phase angle, and I,,,;,, and I, are lower and upper bounds
for the observed intensity. Equation (1) has a m-ambiguity in context of ¢: two
phase angles, with a 7 shift, will result in the same intensity in the captured
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images. Based on the phase angle ¢, the azimuth angle ¢ can be retrieved with

5-ambiguity as follows [9]:

s (2)

@ — T, if specular reflection dominates

b= {gp, if diffuse reflection dominates
PRI

The zenith angle 6 is related to the degree of polarization p, which can be written
as: / s
= Tonae * Do )
When diffuse reflection is dominant, the degree of polarization can be ex-
pressed with the zenith angle 6 and the refractive index n as follows [4]:

(n— 1)%sin0

pa = :
24202 — (n+ 1)2 sin? @ + 4 cos f/n2 — sin? @

The dependency of pg on n is weak [4], and we assume n = 1.5 throughout the

rest of this paper. With this known n, Equation (4) can be rearranged to obtain

a close-form estimation of the zenith angle for the diffuse dominant case.
When specular reflection is dominant, the degree of polarization can be writ-

ten as [4]:
pe = 2sin? 0 cos v/ n? — sin 0 5)

n2? —sin? 0 —n2sin® 6 4+ 2sin* 6’

Equation (5) can not be inverted analytically, and solving the zenith angle with
numerical interpolation will produce two solutions if there are no additional
constraints. For real world objects, specular reflection and diffuse reflection are
mixed depending on the surface material of the object. As shown in Figure 1,
the ambiguity in the azimuth angle and uncertainty in the zenith angle are
fundamental limitations of SfP. Overcoming these limitations through physics-
based neural networks is the primary focus of this paper.

(4)

3.2 Learning with physics

A straightforward approach to estimating the normals, from polarization would
be to simply take the set of polarization images as input, encode it into a
feature map using a CNN, and feed the feature map into a normal-regression
sub-network. Unsurprisingly, we find this results in normal reconstructions with
higher MAE and undesirable lighting artifacts (see Figure 7). To guide the net-
work towards more optimal solutions from the polarization information, one
possible method is to force our learned solutions to adhere to the polarization
equations described in Section 3.1, similar to the method used in [23]. However,
it is difficult to use these physical solutions for SfP tasks due to the following
reasons: 1. Normals derived from the equations will inherently have ambiguous
azimuth angles. 2. Specular reflection and diffuse reflection coexist simultane-
ously, and determining the proportion of each type is complicated. 3. Polariza-
tion images are usually noisy, causing error in the ambiguous normals, especially
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Fig. 1. SfP is underdetermined and one causal factor is the ambiguity prob-
lem. Here, two different surface orientations could result in exactly the same polariza-
tion signal, represented by dots and hashes. The dots represent polarization out of the
plane of the paper and the hashes represent polarization within the plane of the board.
Based on the measured data, it is unclear which orientation is correct. Ambiguities can
also arise due to specular and diffuse reflections (which change the phase of light). For
this reason, our network uses multiple physical priors.

when the degree of polarization is low. Shifting the azimuth angles by 7 or 7
could not reconstruct the surface normals properly for noisy images.

Therefore, we propose directly feeding both the polarization images and am-
biguous normal maps into the network, and leave the network to learn how
to combine both of these inputs effectively from training data. The estimated
surface normals can be structured as following:

N = f(I¢17I¢2a-~-aI¢M7Ndifszspeclstpec2); (6)

where f(-) is the proposed prediction model, {I4,, I4,, ..., T4, } is a set of
polarization images, and N is the estimated surface normals. We use the diffuse
model in Section 3.1 to calculate N g;fr, and N gpec1, IN spec2 are the two solutions
from the specular model. These ambiguous normals can implicitly direct the
proposed network to learn the surface normal information from the polarization.

Our network structure is illustrated in Figure 2. It consists of a fully con-
volutional encoder to extract and combine high-level features from the ambigu-
ous physical solutions and the polarization images, and a decoder to output
the estimated normals, V. Although three polarization images are sufficient
to capture the polarization information, we use images with a polarizer at
®pot € {0°,45°,90°,135°}. These images are concatenated channelwise with the
ambiguous normal solutions as the model input.

Note that the fixed nature of our network input is not arbitrary, but based
on the output of standard polarization cameras. Such cameras utilize a layer of
polarizers above the photodiodes to capture these four polarization images in
a single shot. Our network design is intended to enable applications using this
current single-shot capture technology. Single-shot capture is a clear advantage
of our method over alternative reconstruction approaches, such as photometric
stereo, since it allows images to be captured in a less constrained setting.

After polarization feature extraction, there are five encoder blocks to encode
the input to a B x 512 x 8 X 8 tensor, where B is the minibatch size. The encoded
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Fig. 2. Overview of our proposed physics-based neural network. The network
is designed according to the encoder-decoder architecture in a fully convolutional man-
ner. The blocks comprising the network are shown below the high-level diagram of our
network pipeline. We use a block based on spatially-adaptive normalization as previ-
ously implemented in [40]. The numbers below the blocks refer to the number of output
channels and the numbers next to the arrows refer to the spatial dimension.

tensor is then decoded by the same number of decoder blocks, with skip connec-
tions between blocks at the same hierarchical level as proposed in U-Net [44].
It has been noted that such deep architectures may wash away some necessary
information from the input [15,53], so we apply spatially-adaptive normaliza-
tion (SPADE) [40] to address this problem. Motivated by their architecture, we
replace the modulation parameters of batch normalization layers [19] in each
decoder block with parameters learned from downsampled polarization images
using simple, two-layer convolutional sub-networks. The details of our adapta-
tions to the SPADE module are depicted in Figure 3. Lastly, we normalize the
output estimated normal vectors to unit length, and apply the cosine similarity
loss function:

W H
1 ~
Lcosine = W< H E E (1 - <NijaNij>)a (7)
i g

where (-, -) denotes the dot product, N i; is the estimated surface normal at pixel
location (¢, j), and IN;; is the corresponding ground truth surface normal. This
loss is minimized when IN;; and IN;; have identical orientation.

4 Dataset and Implementation Details

In what follows, we describe the dataset capture and organization as well as soft-
ware implementation details. This is the first real-world dataset of its kind in
the SfP domain, containing polarization images and corresponding ground truth
surface normals for a variety of objects, under multiple different lighting condi-
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x (Upstream Layer
Output)

Ly, L3, Ly Ly,
(Polarization Images)

Fig. 3. Diagram of SPADE normalization block. We use the polarization images
to hierarchically inject back information in upsampling. The SPADE block, which takes
a feature map x and a set of downsampled polarization images {I,, I4,, I¢s, I, } as
the input, learns affine modulation parameters a and 3. The circle dot sign represents
elementwise multiplication, and the circle plus sign represents elementwise addition.

tions. The Deep Shape from Polarization dataset can thus provide a baseline for
future attempts at applying learning to the SfP problem.

4.1 Dataset

A polarization camera [29] with a layer of polarizers above the photodiodes (as
described in Section 3.2) is used to capture four polarization images at angles
0°,45°,90° and 135° in a single shot. Then a structured light based 3D scan-
ner [50] (with single shot accuracy no more than 0.1 mm, point distance from
0.17 mm to 0.2 mm, and a synchronized turntable for automatically registering
scanning from multiple viewpoints) is used to obtain high-quality 3D shapes. Our
real data capture setup is shown in Figure 4. The scanned 3D shapes are aligned
from the scanner’s coordinate system to the image coordinate system of the po-
larization camera by using the shape-to-image alignment method adopted in [49].
Finally, we compute the surface normals of the aligned shapes by using the Mit-
suba renderer [20]. Our introduced dataset consists of 25 different objects, each
object with 4 different orientations for a total of 100 object-orientation combina-
tions. For each object-orientation combination, we capture images in 3 lighting
conditions: indoors, outdoors on an overcast day, and outdoors on a sunny day.
In total, we capture 300 images for this dataset, each with 4 polarization angles.?

4.2 Software implementation

Our model was implemented in PyTorch [41], and trained for 500 epochs with a
batch size of 4. It took around 8 hours for the network to converge with a single
NVIDIA GeForce RTX 2070. We used the Adam optimizer [24] with default
parameters with a base learning rate of 0.01. We train our model on randomly
cropped 256 x 256 image patches, which is relatively common in shape estimation
tasks [38,61] as a form of data augmentation. Further implementation details
are in the supplement.

2 The dataset is available at: https://visual.ee.ucla.edu/deepsfp.htm.
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Fig. 4. This is the first dataset of its kind for the SfP problem. The capture
setup and several example objects are shown above. We use a polarization camera to
capture four gray-scale images of an object with four polarization angles in a single
shot. The scanner is put next to the camera for obtaining the 3D shape of the object.
The polarization images shown have a polarizer angle of 0 degrees. The corresponding
normal maps are aligned below. For each object, the capture process was repeated for 4
different orientations (front, back, left, right) and under 3 different lighting conditions
(indoor lighting, outdoor overcast, and outdoor sunlight).
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Fig. 5. The proposed method handles objects under varied lighting condi-
tions. Note that our method has very similar mean angular error among all test objects
across the three lighting conditions (bottom row). Please see supplement for further
comparisons of lighting invariance.
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5 Experimental Results

In this section, we evaluate our model with the presented challenging real-world
scene benchmark, and compare it against three physics-only methods for SfP.
All neural networks were trained on the same training data as discussed in
Section 4.1. To quantify shape accuracy, we compute the widely used mean
angular error (MAE) score on the surface normals.

5.1 Comparisons to physics-based SfP

We used a test dataset consisting of scenes that include BALL, HORSE, VASE,
CHRISTMAS, FLAMINGO, DRAGON. On this test set, we implement three physics-
based methods for SfP as a baseline: 1. Smith et al. [52]. 2. Mahmoud et al. [33].
3. Miyazaki et al. [37]. The first method recovers the depth map directly, and
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(a)

Fig. 6. Our network is learning from polarization cues, not just shading cues.
An ablation study conducted on the DRAGON scene. In (a) the network does not have
access to polarization inputs. In (b) the network can learn from polarization inputs
and polarization physics. Please refer to Figure 8, row c, for the ground truth shape of
the DRAGON.

Unpolarized Image

Result from Shading Polarization Images  Priors (b) Result from Polarization

we only use the diffuse model due to the lack of specular reflection masks. The
surface normals are obtained from the estimated depth with bicubic fit. Both the
first and the second methods require lighting input, and we use the estimated
lighting from the first method during comparison. The second method also re-
quires known albedo, and following convention, we assume a uniform albedo of
1. Note the method proposed in [37] is the same as that presented in [4]. We
omit comparison with Tozza et al. [59], as it requires two unpolarized intensity
images, with two different light source directions. To motivate a fair comparison,
we obtained the comparison codes directly from Smith et al. [52]. 3

5.2 Robustness to lighting variations

Figure 5 shows the robustness of the method to various lighting conditions.
Our dataset includes lighting in three broad categories: (a) indoor lighting; (b)
outdoor overcast; and (c¢) outdoor sunlight. Our method has the lowest MAE,
over the three lighting conditions. Furthermore, our method is consistent across
conditions, with only slight differences in MAE for each object between lightings.

5.3 Importance of polarization

An interesting question is how much of the shape information is learned from
polarization cues as compared to shading cues. Figure 6 explores the benefit
of polarization by ablating network inputs. We compare two cases. Figure 6(a)
shows the resulting shape reconstruction when using a network architecture op-
timized for an unpolarized image input. The shape has texture copy and a high
MAE of 28.63 degrees. In contrast, Figure 6(b) shows shape reconstruction from
our proposed method of learning from four polarization images and a model of
polarization physics. We observe that shape reconstruction using polarization
cues is more robust to texture copy artifacts, and has a lower MAE of only 19.46
degrees. Although only one image is used in the shading network (as is typical
for shape from shading), this image is computed using an average of the four
polarization images. Thus the distinction between the two cases in Figure 6(a)
and 6(b) is the polarization diversity, rather than improvements in photon noise.

3 https://github.com/waps101/depth-from-polarisation
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Polarization Images Result without Priors Result with Priors

Priors Reduce Copy

Fig.7. Ablation test shows that the physics-based prior reduces texture
copy artifacts. We see that the specular highlight in the input polarization image
is directly copied into the normal reconstruction without priors. Note that our prior-
based method shows stronger suppression of the copy artifact. Please see supplement
for further examples of the effects of priors on texture copy.

5.4 Importance of physics revealed by ablating priors

Figure 7 highlights the importance of physics-based learning, as compared to
traditional machine learning. Here, we refer to “traditional machine learning”
as learning shape using only the polarization images as input. These results are
shown in the middle column of Figure 7. Shape reconstructions based on tradi-
tional machine learning exhibit image-based artifacts, because the polarization
images contain brightness variations that are not due to geometry, but due to
specular highlights (e.g., the HORSE is shiny). Learning from just the polariza-
tion images alone causes these image-based variations to masquerade as shape
variations, as shown in the zoomed inset of Figure 7. A term used for this is
texture copy, where image texture is undesirably copied onto the geometry [21].
In contrast, the proposed results with physics priors are shown in the rightmost
inset of Figure 7, showing less dependence on image-based texture (because we
also input the geometry-based physics model).

5.5 Quantitative evaluation on our test set

We use MAE* to make a quantitative comparison between our method and the
previous physics-based approaches. Table 2 shows that the proposed method has
the lowest MAE on each object, as well as the overall test set. The two most

4 MAE is the most commonly reported measure for surface normal reconstruction, but
in many cases it is a deceptive metric. We find that a few outliers in high-frequency
regions can skew the MAE for entire reconstructions. Accordingly, we emphasize the
qualitative comparisons of the proposed method to its physics-based counterparts.



12 Y. Ba et al.

Table 2. Our method outperforms previous methods for each object in the
test set. Numbers represent the MAE averaged across the three lighting conditions
for each object. The best model is marked in magenta and the second-best is in blue.

Scene Proposed Smith [52] Mahmoud [33] Miyazaki [37]
Box 23.31° 31.00° 41.51° 45.47°
DRrRAGON 21.55° 49.16° 70.72° 57.72°
FATHER CHRISTMAS 13.50° 39.68° 39.20° 41.50°
FLAMINGO 20.19° 36.05° 47.98° 45.58°
HORSE 22.27° 55.87° 50.55° 51.34°
VASE 10.32° 36.88° 44.23° 43.47°
WHOLE SET 18.52° 41.44° 49.03° 47.51°

challenging scenes in the test set are the HORSE and the DRAGON. The former has
intricate detail and specularities, while the latter has a mixed material surface.
The physics-based methods struggle on these challenging scenes as all scenes
have over 49 degrees of mean angular error. The method from Smith et al. [52]
has the second-lowest error on the DRAGON scene, but the method from Miyazaki
et al. [37] has the second-lowest error on the HORSE scene. On the overall test set,
the physics-based methods are all clustered between 41.4 and 49.0 degrees, while
the physics-based deep learning approach we propose achieves over a two-fold
reduction in error to 18.5 degrees.

The reader may wonder why the physics-based methods perform poorly on
tested scenes. The result from Smith et al. [52] assumes a reflection model and
combinatorial lighting estimation, which do not appear to scale to unconstrained,
real world environments, resulting in a normal map with a larger error. Mahmoud
et al. [33] uses shading constraints that assume a distant light source, which is
not the case for some of the tested scenes, especially the indoor ones. Finally,
the large region-wise anomalies on many of the results from Miyazaki et al. [37]
are due to the sensitive nature of their histogram normalization method.

5.6 Qualitative evaluation on our test set

Figure 8 shows qualitative and quantitative data for various objects in our test
set. The RGB images in (row a) are not used as input, but are shown in the
top row of the figure for context about material properties. The input to all
the methods shown is four polarization images, shown in (row b) of Figure 8.
The ground truth shape is shown in (row c), and corresponding shape recon-
structions for the proposed method are shown in (row d). Comparison methods
are shown in (row e) through (row g). It is worth noting that the physics-based
methods particularly struggle with texture copy artifacts, where color variations
masquerade as geometric variations. This can be seen in Figure 8, (row f), where
the physics-based reconstruction of Mahmoud [33] confuses the color variation in
the beak of the FLAMINGO with a geometric variation. In contrast, our proposed
method, shown in (row d), recovers the beak more accurately. Beyond texture
copy, another limitation of physics-based methods lies in the difficulty of solving
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Fig. 8. The proposed method shows qualitative and quantitative improve-
ments in shape recovery our test dataset. (row a) Shows the RGB scene pho-
tographs for context - these are not used as the input to any of the methods. (row b)
The input to all methods are a stack of four polarization photographs at angles of 0°,
45°,90°, and 135°(row c). The ground truth normals, obtained experimentally. (row d)
The proposed approach for shape recovery. (row e-g) We compare with physics-based
SfP methods by Smith et al. [51], Mahmoud et al. [33] and Miyazaki et al. [37]. (We
omit the results from Atkinson et al. [4], which uses a similar method as [37]). Please

see supplement for further comparisons.
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the ambiguity problem, discussed earlier in this paper. In row g, the physics-based
approach from Miyazaki et al. [37] has significant ambiguity errors. This can be
seen as the fixed variations in color of normal maps, which are not due to ran-
dom noise. Although less drastic, the physics-based method of Smith et al. [52]
also shows such fixed pattern artifacts, due to the underdetermined nature of
the problem. Our proposed method is fairly robust to fixed pattern error, and
our deviation from ground truth is largely in areas with high-frequency detail.
Although the focus of Figure 8 is to highlight qualitative comparisons, it is worth
noting that the MAE in of the proposed method is the lowest for all these scenes
(lowest MAE is highlighted in green font).

6 Discussion

In summary, we presented a first attempt re-examining SfP through the lens of
deep learning, and specifically, physics-based deep learning. Table 2 shows that
our network achieves over a two-fold reduction in shape error, from 41.4 de-
grees [52] to 18.5 degrees. An ablation test verifies the importance of using the
physics-based prior in the deep learning model. In experiments, the proposed
model performs well under varied lighting conditions, while previous physics-
based approaches have either higher error or variation across lighting.

Future Work The framerate of our technique is limited both by the feed-
forward pass, as well as the time required to calculate the physical prior (about
1 second per frame). Future work could explore parallelizing the physics-based
calculations or using approximations for more efficient compute. As discussed
in Section 5.5, the high MAE is largely due to a few regions with extremely
fine detail. Finding ways to effectively weight these areas more heavily or add
a refinement stage focused on these challenging regions, are promising avenues
for future exploration. Moreover, identifying a metric better able to capture the
quality of reconstructions than MAE would be valuable for continued study of
learning-based SfP.

Conclusion We hope the results of this study encourage future explorations
at the seamline of deep learning and polarization as well as the broader field of
fusion of data-driven and physics-driven techniques.
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