

Thermal Non-Line-of-Sight Imaging Tomohiro Maeda¹, Yiqin Wang², Ramesh Raskar¹, Achuta Kadambi² ¹MIT Media Lab | ²Department of Electrical Engineering, UCLA

How to see around corners?

We propose a novel non-line-of-sight (NLOS) imaging framework with long-wave infrared (IR). Surface reflectance has a much stronger specular reflection in the long-wave IR spectrum than in the visible light spectrum. We reformulate a light transport model that leverages these favorable physical properties of long-wave IR. Specifically, we demonstrate 2D shape recovery and 3D localization of a hidden object. Furthermore, we demonstrate near real-time and robust NLOS pose estimation of a human figure, the first such demonstration, to our knowledge.

The visible light problem is a two-bounce (a) problem, where the hidden object is a reflector. (b) The long-wave IR problem is a one-bounce problem since the hidden object is a light emitter.

	ToF	Coherence	RGB	Proposed	
Illumination	Active	Active	Passive	Passive	
Cost	High ^a	Low	Low	Low	
Ambient Light	Robust	Not Robust	Not Robust	Robust	
Depth Resolution	Fine	None ^b	Coarse ^c	Coarse	
2D Shape Resolution	Fine	Fine	Coarse	Fine	
Comparing the proposed methods with					
the relate	the related NLOS imaging methods.				

Camera (a) Corner setup (c) 2D reconstructions for different depths

Our Novel Approach: Integrate Thermal BRDF Model with Pose Estimation

NLOS pose estimation results.

Ground TruthEstimated Location Ground TruthEstimated Location Estimated Location

applications. Our results are powered by the simplicity of a one-bounce problem and a strong specular surface reflectance.

Future work can build upon such favorable physics to further realize the vision of a camera that can see around corners.

References

Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." International Conference on computer vision Pattern Recognition (CVPR'05). Vol. 1. IEEE Computer Society, 2005 [2] Yang, Yi, and Deva Ramanan. "Articulated pose estimation with flexible mixtures-of-parts." CVPR 2011. IEEE, 2011

[3] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karer Egiazarian. "Image denoising by sparse 3D transform-domain collaborative filtering" IEEE 2017.

[4] Tomohiro Maeda, Yiqin Wang, Achuta Kadambi, Ramesh Raskar. "Nonline-of-Sight Imaging by Exploiting Unique Properties of Long-Wave IR" ICCP 2019.