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We propose a novel non-line-of-sight (NLOS) imaging framework with long-wave infrared (IR). At long-wave IR wavelengths,
certain physical parameters are more favorable for high-fidelity reconstruction. In contrast to prior work in visible light NLOS, at
long-wave IR wavelengths, the hidden heat source acts as a light source. This simplifies the problem to a single bounce problem.
In addition, surface reflectance has a much stronger specular reflection in the long-wave IR spectrum than in the visible light
spectrum. We reformulate a light transport model that leverages these favorable physical properties of long-wave IR. Specifically,
we demonstrate 2D shape recovery and 3D localization of a hidden object. Furthermore, we demonstrate near real-time and robust
NLOS pose estimation of a human figure, the first such demonstration, to our knowledge.

Index Terms—computational photography, non-line-of-sight imaging, infrared imaging

I. INTRODUCTION

Non-line-of-sight (NLOS) imaging has gained significant
interest in recent years. The ability to look around corners has
many applications, such as search-and-rescue operations, and
autonomous vehicle navigation.

Previous methods in NLOS imaging use visible light (wave-
lengths at 0.4-0.7µm). In contrast, this paper proposes a
passive NLOS method that operates with long-wave IR (wave-
lengths at 8-14µm). This change of wavelength inspires the
design of a fundamentally new light transport formulation.
Fig. 1 shows two advantages of our passive NLOS imaging
with long-wave IR as compared to visible light. First, since the
hidden object is a light source rather than a light reflector, one
has to consider fewer light paths (e.g., a one-bounce, rather
than a two-bounce scenario). Second, the surface reflectance
of ordinary materials (from a rough metallic surface to colored
acrylic) have a stronger specular reflection in the long-wave
IR spectrum than in the visible light spectrum. This enables
us to generalize passive NLOS imaging to new geometries, to
scenes without occlusions or shadows.

Contributions: To our knowledge, this is the first ”seeing
around corners” paper at long-wave IR wavelengths. Our
technical contributions include:
• A novel image formation model for NLOS with long-

wave IR;
• A BRDF-based NLOS object reconstruction technique;

and
• A robust NLOS human pose estimation with noisy reflec-

tion image.
Taken together, the technique has applications in passive, low-
cost NLOS imaging under real-time operating constraints.

Limitations: Our NLOS reconstruction is limited to objects
with a known uniform long-wave IR radiation (temperature) at
a single depth (planar). We further assume isotropic long-wave
IR radiation of the object. Such assumptions seem strong, but
some common object of interest such as the human body has
a known long-wave IR emission, and black-body radiation is
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Fig. 1: NLOS imaging with long-wave IR is fundamentally
different from NLOS at the visible wavelengths. (a) The
visible light problem is a two-bounce problem, where the
hidden object is a reflector. (b) The long-wave IR problem is a
one-bounce problem since the hidden object is a light emitter.
In addition to the bounce order, the two problems also differ
in their BRDF characteristics.

isotropic [1]. While diffuse surface reflectance is the challenge
for NLOS imaging in the visible spectrum, absorption at the
surface is the challenge for Thermal NLOS. We demonstrate
reconstructions on surfaces with low albedo, but the low SNR
could limit the range of materials for our reconstruction and
pose estimation algorithms to work.

II. RELATED WORKS

We briefly describe works that relate to this paper. In
contrast to prior work in visible-light NLOS imaging, our
approach leverages long-wave IR to see around corners. For
our extension to succeed, we reformulate the light transport
model and reconstruction algorithm for the long-wave IR
spectrum. Table 1 compares the general limitations of the
proposed approach with other approaches.

Long-wave IR (thermal) imaging: All heat sources radi-
ate light at 8-14µm wavelengths (long-wave IR). A thermal
camera captures the long-wave IR spectrum and has been
traditionally used for temperature measurements. Many appli-



TABLE I: Comparing the proposed methods with the
related NLOS imaging methods.

ToF Coherence RGB Proposed

Illumination Active Active/Passive Active/Passive Passive

Cost High a Low Low Low

Ambient
Light Robust Not Robust Not Robust Robust

Depth
Resolution Fine Noneb Coarsec Coarse

2D Shape
Resolution Fine Fine Coarse Fine

a Amplitude modulated continuous wave ToF camera is affordable, but ToF
sensors (streak cameras, SPAD) often used for NLOS imaging are costly.
b Motion can be resolved in 3D [2], but reconstruction is limited in 2D scene.
c Requires multiple occlusions for depth recovery.

cations can be enhanced at thermal wavelengths. The presence
of a human body has a unique long-wave IR signature, which
enables robust body pose estimation [3]. Subsequent work in
human-computer interaction has exploited the unique long-
wave IR reflectance for a novel human-computer interface [4].
A combination of long-wave IR and heat transport enables
transient light transport capture at video framerates [5]. Re-
cently, thermal cameras have been a great interest for sensor
fusion techniques [6]–[8]. In contrast to prior art, this paper
is a first attempt to exploit the beneficial properties of the
long-wave IR reflectance, to see around corners.

NLOS with time-of-flight: There is a myriad of prior
works that utilize time-of-flight information to see around
corners. Perhaps, the first attempt originated with Kirmani
et al. [9]. In a seminal demonstration, Velten et al. [10]
showed high-quality 3D reconstruction results of a hidden
object around a corner using elliptical back-projection. Ex-
tensions and reformulations of back-projection have spawned
an exciting new area of study [11]–[17]. Recently proposed
confocal optical setup formulates a linear inverse problem as
a deconvolution problem, enabling fast and efficient recon-
struction [18]. While a streak camera and a single photon
avalanche diode are expensive, NLOS can be performed with
amplitude modulated continuous wave (AMCW) ToF camera,
which costs less by several orders of magnitude [19]–[21].
A transient renderer can be used to match NLOS scene with
ToF measurements to recover the hidden scene [22]. Other
applications of ToF camera in computational imaging such as
de-scattering and light transport decomposition can be found in
[23]–[27]. In contrast to the ToF methods, this paper exploits
the passive reflectance at long-wave IR wavelengths.

NLOS with coherence: The coherence of light is useful
for NLOS imaging. Memory effect can be used to recover the
hidden scene by performing phase-retrieval algorithms on the
auto-correlation of the captured image [28]. Speckle patterns
produced by the interaction of active coherent illumination
and a hidden scene can be used to track the small motion of

TABLE II: Comparing assumptions and capability of the
proposed and the previous passive NLOS techniques.

Bouman-17 [30] Saunders-19 [31] Proposed

Assumptions Occlusion
geometry

Shape and size of
occluding object,

Known target depth

Known long-wave
IR radiation,
Single depth

Capabilities
1D tracking,
Localization

with 2 corners
2D RGB

reconstruction
2D shape

reconstruction,
Localization

multiple objects [2] and recover the hidden scene [29]. While
coherence approaches for NLOS imaging can be done with
affordable standard cameras, these methods often suffer from
a small field of view.

NLOS with standard cameras: Standard camera com-
bined with active illumination can track the motion [32]
or perform colored reconstruction [33] of objects around a
corner. Occlusion geometries found in the corner scenes can
be used to track [30] or reconstruct the hidden objects with
passive sensing [31], [34], [35]. Data-driven approaches have
shown that it is possible to learn to achieve NLOS imaging
using a standard camera [36]. While our method is also a
passive NLOS solution, our use of long-wave IR wavelengths
requires a reformulation of the light transport model and
reconstruction methodology. Though previous passive NLOS
solutions require occluding geometries, ours does not. Table
2 compares the assumptions and capability of the proposed
technique with previously proposed passive NLOS imaging
techniques.

NLOS and surface reflectance: Ordinarily, NLOS imag-
ing was studied for Lambertian surfaces. Kadambi et al. were
the first to generalize the seeing around corners problem
to exploit arbitrary, non-Lambertian BRDFs [21]. However,
Kadambi et al. did not study the NLOS imaging problem
without time-of-flight measurement. Although our method
also exploits the reflectance function, we need to reformulate
the forward and inverse problem for the new scenario of
passive, long-wave IR. Sasaki et al. proposed BRDF-based
reconstruction of a light field with passive sensing [37]. We
mainly focus on 3D localization as 2D reconstruction is trivial
with the narrow specular BRDF of the long-wave IR.

Pose estimation: In this paper, we show the results of a
human pose estimation around the corner. For line-of-sight
scenes, estimation of human pose is not a new problem.
Model-based approaches [38], [39] use parameters such as
joints orientations that match with articulated templates [39].
The pictorial structure methods [40]–[42] model human body
with spring-like joints [43]. Data-driven approach for pose
estimation has been successful in recent years [44]–[46].
Although this paper leverages existing pose estimation al-
gorithms, we propose a heuristic combination of denoising
and pose estimation that works well on the noisy NLOS
measurements.

III. NLOS THERMAL IMAGE FORMATION MODEL

In this section, we describe a new image formation model
for NLOS imaging with long-wave IR because the hidden



Fig. 2: Corner setup. The canonical scene setup consists of a
camera looking at the wall at a corner. o and w denote point
locations on a target object and wall, and unit vectors ~l,~v,~n
denote the directions of incoming, outgoing light and surface
normal of the wall. f(~l,~v,~n) is the BRDF of the wall.

object is a light emitter rather than a reflector and a wall
surface has a specular dominant BRDF. We take a corner setup
illustrated in Fig. 2 throughout this paper.

A. Emissivity and Albedo
When long-wave IR interacts with a wall, it is either

absorbed, reflected or transmitted. Kirchhoff’s law of thermal
radiation states that emissivity ε of material is equivalent to
absorptivity. When the transmission is negligible, the albedo
of a surface ρ can be written as

ρ = 1− ε (1)

B. Temperature and long-wave IR intensity
Stefan-Boltzmann law gives a relationship between the

object temperature Tobj and long-wave IR radiance:

E = εoσT
4
obj , (2)

where εo is the emissivity of the surface, and σ is the Stefan-
Boltzmann constant.

A thermal camera captures the sum of long-wave IR emitted
from a wall surface and reflected light from an object. When
an object is not present, the camera observes reflected ambient
radiation. From Stefan-Boltzmann law, the radiance of the
corner wall without the hidden object can be written as

Ibackground = εwσT
4
w + (1− εw)σT 4

amb, (3)

where Tw, Tamb denote the wall temperature and ambient
temperature. εs is the emissivity of the corner wall. When
an object at a temperature Tobj is present in the hidden scene,
the radiance of the wall can be written as

Iobj = εwσT
4
w + (1− εw)εoσT 4

obj . (4)

Subtracting Eq. 4 from Eq. 3, we get the radiance of long-wave
IR light due to the long-wave IR radiation of the object,

I = (1− εw)σ(εoT 4
obj − T 4

amb). (5)

We treat an object as a long-wave IR source with its effective
radiance after background subtraction of ambient temperature
is

Eobj = σ(εoT
4
obj − T 4

amb). (6)

Fig. 3: Fitting specular BRDF model to long-wave IR
surface reflectance of common materials. The top left
diagram shows our BRDF caption scheme. A soldering iron
was used as a light source, and a rotation stage was used to
capture long-wave IR intensity over the varying angle between
half vector ~h and surface normal ~n. The plots show GGX
specular BRDF models fitted to the measurements of a variety
of materials. Fitting to other materials can be found in Fig. 9.

C. Specular BRDF Model

There are various analytic models to approximate the BRDF
of surfaces [47]–[51]. Our key observation is that the BRDF
of common materials in the long-wave IR spectrum can be
approximated with a specular BRDF model as shown in Fig. 3.
This observation agrees with the work of Bennett and Porteus,
which showed that the strength of diffuse reflection decreases
by a factor of 1/λ4, where λ is the wavelength of light [52].
As long-wave IR has a much longer wavelength than visible
light, measured diffuse term of BRDF was negligible, and
specular BRDF models approximate the BRDF of various
materials well. While Tanaka et al. [53] suggests that diffuse
reflection may occur by heat transfer from directed long-wave
IR sources, we didn’t observe heat transfer for sources with
isotropic heat emission.

While several specular BRDF models reasonably fit the
measured BRDF, we found that microfacet-based Cook-
Torrance model [48] with the GGX distribution [49] best fits
the observations (see Appendix A). Hence, we write BRDF of
the wall as a function of unit vectors that represent directions
of the surface normal of a wall ~n, incoming light ~l, and
outgoing light ~v.

f(~l, ~v, ~n) =
D(~h, ~n)F (~v, ~h)G(~l, ~v, ~h, ~n)

4(~l · ~n)(~v · ~n)
, (7)

where ~h = (~l + ~v)/
∥∥∥~l+ ~v

∥∥∥ is a half vector. D(~h, ~n),

G(~l, ~v, ~h, ~n) and F (~v, ~h) denote surface normal distribution
function, the shadowing factor, and Fresnel function (see



Fig. 4: Alternative approach for BRDF parameter esti-
mation. (a) Experimental setup for measurements. The same
scene is simulated in physical-based render using the Cook-
Torrance model with GGX distribution, parameterized by α.
(b) When α is estimated such that the simulated measurements
match with the experimental measurement.

Appendix B for details). This BRDF model is parameterized
by a single parameter α, which represents ‘roughness’ of the
surface.

D. Light Transport Model

A light transport model describes how long-wave IR light
emitted from the object reaches the camera. Let us consider
a planar object with a temperature of Tobj . This object acts
as an area light source with radiance Eobj described in Eq. 6.
The irradiance of a wall from a single point of the object can
be written as

L(o,w) =
Eobj

π ‖o−w‖2
, (8)

where o,w denote positions of points on the object and the
wall. The flux on a camera pixel corresponding to a wall patch
Wi can be written as an integral of flux over points on Wi

and outgoing directions of photons that reach the camera ~V .

I(o,Wi) =

∫
w∈Wi

∫
~v∈~V

(1− εw)L(o,w)f(~l, ~v, ~n) d~v dw,

(9)
where 1−ε is equivalent to the albedo ρ. Finally, the observed
intensity from the hidden object at the camera pixel seeing a
wall patch Wi is written as

I(Wi) =

∫
o∈O

I(o,Wi) do, (10)

where the integral is over all the points on the object.

IV. NLOS SCENE RECONSTRUCTION

Our reconstruction method efficiently recovers the 2D shape
of the object from a narrow specular BRDF in the long-wave
IR spectrum. When specular reflection has some width, the
intensity of the object reflection drops as the object moves
further away from the wall. Using the the known long-wave
IR emission of the object, our algorithm recovers the distance
between the wall and the object.

We assume that the geometry of the wall is known with
respect to the camera. Now, we describe our reconstruction
algorithm step by step.

A. BRDF Estimation

BRDF of surfaces can be recovered by measuring the angle-
varying intensity of the surface reflection as illustrated in
Fig. 3. This can also be accomplished by moving the light
source or the detector instead of moving the material directly.

Alternative approach for BRDF fitting: Full capture of
BRDF usually requires a precisely controlled environment.
Instead of capturing full BRDF, the estimation of roughness
parameter α of the GGX distribution can be performed in a
simplier manner as summarized in Fig. 4.

We take k measurements with a known long-wave IR
source. We simulate the same scene in a physically-based
renderer to estimate α that is consistent with the measure-
ment. We denote the average intensity of reflection of the
object as µ = [µ1, ..., µk]. Simulated measurements µ̂ =
[µ̂1(α, ε), ..., µ̂k(α, ε)] are parameterized by α and albedo ρ.
Because the albedo is a constant outside of integrals in Eq. 9
and 10, the ratio of elements in µ and µ̂ is parameterized only
by α. Hence, α can be estimated as

α̂ = argmin
α

∥∥∥∥ µµ1
− µ̂

µ̂1

∥∥∥∥2 . (11)

µ̂ is continuous with respect to α, so gradient descent can be
used, where the gradient is numerically approximated through
the simulation. Once α is estimated, the albedo of the wall
can be estimated as

ρ̂ = ρs
µ0Es
µ̂0Eobj

, (12)

where ρs, Es are the simulated albedo and radiance.

B. Forward Model Construction

Light transport matrix A ∈ Rm×n represents the mapping
between the radiance of the hidden object x ∈ Rn to the
measurement y ∈ Rm:

y = Ax, (13)

Once the parameters of the BRDF model are estimated, light
transport model Â can be constructed using Eq. 9 and 10. The
integrals in these equations are hard to evaluate analytically.
We use Monte Carlo path tracing simulation to approximate
the integrals. We discretize the hidden scene and recover Â
by moving a small area light source at discrete voxel locations
in the simulation.

C. Reconstruction

In the long-wave IR spectrum, recovery of the 2D shape is
trivial as surface reflectance has a dominant specular reflection.
Hence, we reconstruct the 2D shape of the object first, then
estimate the location of the object using uniform, known tem-
perature. Fig. 5 illustrates an overview of our reconstruction
algorithm. Our technique assumes uniform temperature and
single depth of the hidden object but does not require prior
knowledge on the 2D shape or the size of the object.

2D shape recovery: Let’s consider a simple case where
we know the distance between the hidden planar object and



Fig. 5: Reconstruction algorithm for 2D shape recovery
and 3D localization. (a) Corner setup. From (b) measurement,
(c) we perform 2D shape reconstruction at different depths.
(d) Given the fitted BRDF model, long-wave IR radiance of
an object is estimated for each depth. We estimate depth by
finding a depth whose estimated radiance is the closest to
expected radiance from the temperature prior.

the wall. Since BRDF of a wall only has a narrow specular
component, the 2D shape of the object is visible. Hence, we
approximate the forward model with ideal mirror reflection
M ≈ Â ∈ Rm×n for an efficient shape recovery. Under the
uniform temperature assumption, we can write x = Eobjx̂,
where x̂ ∈ {0, 1} is an estimated 2D shape that spans over a
fixed depth. The object shape can be recovered as

x̂i ≈ I
{ m∑
j=1

I{Mji ≥ γ1}I{yj ≥ γ2} ≥ 1

}
, (14)

,where I{·} ∈ {0, 1} is an indicator. x̂i = 1 indicates the
object is present, and 0 indicates otherwise.

3D localization: We perform 2D shape reconstruction for
multiple depths d = [d1, d2, ..., dl]. For each 2D reconstruction
[x̂(1), x̂(2)..., x̂(l)], we estimate long-wave IR radiance of the
object that fits with the measurement.

Ê
(i)
obj = argmin

E

∥∥∥y − EÂ(i)x̂(i)
∥∥∥2 , (15)

where Â(i) is a light transport model for voxels at fixed
distance from the wall di. In practice, the discretized model
in simulation does not match perfectly with the measurement
(e.g., mismatch of the discretized reconstruction and continu-
ous world). We overcome this problem by taking an average
of object reflection intensity values from y and EÂ(i)x̂(i),
and minimize the difference of these two quantities. Then, we
estimate the 3D location of the object as follows:

d̂ = argmin
di∈d

∥∥∥Eobj − Ê(i)
obj

∥∥∥2 . (16)

The 3D localization capability is limited by emissivity and
roughness of the wall, size of the object, and temperature of
the object. See Section VI-A for further discussions.

V. NLOS 2D POSE ESTIMATION

The 2D shape of the hidden object is visible from the
reflection because of the dominant specular reflection in the
long-wave IR spectrum. We exploit this fact to NLOS 2D
pose estimation. In this section, we extend line-of-sight pose
estimation algorithms to NLOS scenes. We show that in the
long-wave IR, even a simple preprocessing of thermal images
can enable a robust pose estimation around corners.

A. 2D Pose Estimation

We follow Yang-Ramanan model for 2D pose estimation,
which estimates human pose using a mixture of non-oriented
pictorial structures. Yang-Ramanan 2D pose estimation outputs
small patches within images that are likely to contain a specific
class of body parts such as head and torso. The key ideas of
this approach are as follows. First, local features of the feature
such as the histogram of oriented gradients (HOG) [54].
Second, the spatial connection between the patches. Third, the
consistency of local features in connected patches. We refer
readers to [55] for further details of the algorithm.

While Yang-Ramanam model works well for a line-of-sight
body in RGB images, it fails on noisy thermal reflection
images of a body in NLOS. This is because HOG of NLOS
thermal images is much less structured than typical line-of-
sight RGB images as shown in Fig. 7 (a).

B. Processing Thermal Image

Typical NLOS body images on a wall with high emissivity
look ‘blurry’ (Fig. 10 (b)). Based on our analysis on BRDF
discussed in Section III-C, we conclude that the ‘blurriness’
is due to low SNR caused by the low albedo of the surface.
From this observation, we apply denoising to thermal images
to improve NLOS pose estimation.

We denoise thermal images with two methods. First, we
use a median filter, which removes the additive noise and
preserves the edges. Second, we further denoise images with
total variation (TV) regularization:

ITV = argmin
Î

∥∥∥Imed − Î
∥∥∥2 + λ

∥∥∥∇Î∥∥∥
1
, (17)

where Imed is an image processed with median filtering. The
second term encourages smaller total variation of the resulting
image. See Section VI-B for analysis on how denoising
improves HOG features of NLOS body reflections, and thus,
improves pose estimation accuracy in thermal images.

VI. ANALYSIS

A. Analysis on Depth Recovery

The BRDF-based object localization method exploits the
fact that the intensity of the reflection drops as the object
moves further away from the wall. The emissivity ε, the
roughness of a wall α, and the size of the object affect the



Fig. 6: Depth recovery sensitivity depends on roughness,
size of the object, and emissivity of the wall. (a) Simulation
setup for thermal measurement of the object reflections. (b-d)
Plots of temperature change when the object is moved from
25.4cm to 30.4cm away from the wall.

depth recoverability. The direct evaluation of depth resolution
is challenging due to the complexity of the GGX BRDF model.
However, we provide the intuition of what affects the depth
recoverability by analyzing how temperature measurement of
the reflection changes when the hidden object moves away
from the corner wall. We simulated the thermal images using
Mitsuba renderer, and plotted how the temperature of the
reflection image changes as the object moves further away
from the wall (Fig. 6). The simulated ambient and object
temperatures were 37, 10◦C, and the object was moved from
25.4cm to 30.4cm away from the wall. The horizontal distance
between the object and camera is 10.2cm.

Roughness: The roughness of the wall α affects the depth
resolution. If a wall is an ideal mirror, reflection intensity of
an area source does not change when the hidden objects move
to another depth. This is because the surface area of the object
corresponding to a camera pixel grows by the square of the
distance, while irradiance per area of the object decays by the
square of the distance. Indeed, imperfect specular reflection
allows reflection intensity to change as the hidden object
changes its depth as illustrated in Fig. 6 (b).

Object size: When the hidden object is infinitely large,
the integral in Eq. 9 and 10 becomes the same for any depth
with the infinitely large object, which makes depth estimation
impossible. When object size becomes too large, localization
is challenging (Fig. 6(c)). This is because as the the (~h · ~n)
becomes larger, BRDF becomes negligibly small. However,
our method is scalable to larger, practical scenarios because
BRDF is a function of angles, and scaling both object size
and scene geometry preserves ~l,~v and ~n (Appendix C).

Emissivity: When a wall has a high emissivity (low
albedo), intensity change due to the hidden object could be

Fig. 7: Comparing HOG features in the raw frames and
the denoised frames. (a) The raw thermal frame does not have
a clear gradient structure due to a high noise level. (b) Me-
dian filtering mitigates noisy gradients. (c) TV regularization
removes most of the gradient where a body is not present.

Fig. 8: Analysis on failure cases. (a,b) Median filtering did
not remove high-frequency noise. Leg part surrounded by
an orange box has only small gradients. (c,d) TV denoising
introduced artificial gradients in the region surrounded by an
orange box, which tricked the pose estimation algorithm.

below the noise level of the sensor. Some materials with high
albedo in the visible spectrum could have low albedo in the
long-wave IR spectrum. Such problems can be solved by aver-
aging many frames to improve SNR in practice. Ambient and
object temperature also limits the SNR. When the difference
between these two temperatures is small, the long-wave IR
radiation due to the presence of the hidden object becomes
small.

Model mismatch: One source of model mismatch is from
the discretization of the hidden scene while the physical world
is continuous. For example, a small change in voxel location
affects simulated intensity around the edge in the reflection
image of the hidden object. We use averaged intensity for
depth recovery to overcome this mismatch. Other sources of
model mismatch come from the accuracy of approximation
with analytic BRDF model and accuracy of integral approxi-
mation with the Monte Carlo method.



Fig. 9: NLOS scene reconstruction results. (a) Corner setups. In the visible spectrum, the object is not visible on the wall.
(b) Thermal image of the target. (c) BRDF is fitted with GGX specular BRDF model. (d) Localization of the target (red circle
shown in (b)). Reconstruction does not require prior knowledge on the shape or size of the hidden object.

B. Analysis of Pose Estimation Improvement

Analytic evaluation of the pose estimation accuracy is
challenging as a body has many degrees of freedom. We
investigate how denoising improves HOG features of images,
which is a base for various pose estimation algorithms.

Fig. 7 visualizes HOG features on raw and processed
frames. Median filtering mitigates noisy gradients, and TV
regularization removes gradients where a body is not present.
Fig. 8 provides visual analysis of failure cases for median
filtering and TV denoising. (a), (b) show that TV denoising
could remove noise that median filter could not remove. (c),
(d) show the case where TV denoising introduces artifacts,
which results in pose estimation error.

A t-shirt and middle-length trousers were used for the hid-
den person’s clothing in this paper. Different types of clothing
may affect the pose estimation capability. For example, if
there is no heat transfer between human skin to the surface

of the clothes, the temperature of the clothes would be the
same as the ambient temperature, which does not appear in
the reflection.

VII. EXPERIMENTAL VALIDATIONS

We describe the simulation and experiment setups we used
for validation of our techniques.

A. Simulation

A physically-based Mitsuba renderer [56], was used to ap-
proximate the light transport model. We simulated a wall with
a Cook-Torrance model with GGX microsurface distribution.
Mitsuba’s implementation of this model follows [49]. Though
the Mitsuba renderer does not render thermal images, Eq. 2
allows us to convert a thermal image to a long-wave IR light
intensity image.



Fig. 10: NLOS pose estimation results. We show that processing raw frames of thermal images can improve the pose estimation
algorithm. (a) shows NLOS imaging setup. (b) is an example of raw output from the camera. (c), (d), (e) Appropriate processing
of raw thermal video frames results in better posture estimation. (f) (g) TV regularization could correct pose estimation on
median filtering, while in (h), it could introduce artifacts that result in pose estimation error. (g) and (h) include human detection
through score thresholding. Raw frames did not get high enough score for body detection.

B. Experiments

In this section, we describe the experimental setups for
NLOS scenes.

BRDF caption: To estimate α accurately, we fitted the
GGX specular BRDF model to intensity measurement cap-
tured by moving the wall material as illustrated in Fig. 3. We
used PureThermal 2 module with FLIR Lepton 3.5 thermal
sensor as a detector, and soldering iron as a point long-wave IR
source. For the parameter fitting showed in Fig. 4, we placed
7.6 by 7.6cm heat source with a known temperature 25.4, 38.1,
and 50.8cm away from the wall while the camera was fixed
at 12.4cm away from the wall. The same scene was simulated
in Mitsuba, and albedo ρ was estimated using Eq. 12.

NLOS reconstruction: Fig. 9 (a) illustrates the experi-
mental corner setups with copper, acrylic and marble walls. To
create a planar target, an aluminum plate was attached on an IR
heater to distribute the heat uniformly, and a electric tape with
emissivity close to 1 was placed for long-wave IR radiation.
Heated aluminum with low emissivity emits negligible long-
wave IR. The L-shaped planar Target temperature was set at
between 50− 60◦C and the ambient temperature was around
32◦C. We averaged 30 thermal images for each measurement.
Fig. 9 (d) summarizes experimental setup geometry. The
camera was 12.7cm away from the wall, and objects were
placed at 25.4, 38.1, and 50.8cm away from the wall. The
background image was captured before placing the heat source

for background subtraction of ambient temperature described
in Eq. 6. For reconstruction of L shaped target, we chose
the threshold γ1 and γ2 in Eq. 14 to be max{y}/1.5 and
0.07 for all the reconstruction. The resolution of 2D shape
reconstruction is 80 by 120 with a pixel size of 2.54 by
2.54mm. The depth candidates are sampled between 10.16 and
43.18cm (4-17inch) with the interval of 1.27cm (0.5inch).

Pose estimation: Fig. 10 (a) shows the experimental setup,
where a thermal camera looked at a whiteboard with a viewing
angle of roughly 45 degrees. The camera was roughly 1m
away from the wall, and the hidden person wearing a t-shirt
and middle-length trousers was 0.4m away from the wall.
The ambient temperature was around 20◦C. We used a Seek
Compact Pro thermal camera with 320 by 240 pixels and
70mK thermal sensitivity. The thermal camera outputs frames
with the normalized contrast. We used a median filter with
a kernel size of 3, and TV regularization with λ = 0.2 for
denoising. The implementation of pose estimation followed
[57]. Denoising and pose estimation took about 1.8 seconds on
a 160 by 120 downsampled thermal image on an unoptimized
laptop computer. This result shows the potential for real-time
NLOS pose estimation.

C. Results

Estimated roughness α and albedo ρ for copper, acrylic,
and marble surfaces are 0.009, 0.008, 0.006, and 0.84, 0.038,



0.094. Fig. 9 (c) shows the fitted model and intensity mea-
surements. Fig. 9 (d) summarizes 2D shape reconstruction and
localization.

Fig. 10 illustrates some frames of video that compares body
pose estimation performance. Table III shows the accuracy
of pose estimation evaluated over 210 video frames. NLOS
body detection was performed by score thresholding. See the
supplemental material for the resulting video. We showed that
denoising thermal images improves the accuracy of a pose
estimation algorithm on NLOS thermal images. Surprisingly,
TV denoising did not improve pose estimation accuracy from
median filtered images other than left leg detection. As shown
in Fig 8, this may be due to artifacts that the TV regular-
izer introduces, while there are frames where TV denoising
improves pose-estimation accuracy.

TABLE III: Comparing accuracy of pose estimation for raw
thermal frames and denoised thermal frames.

Head Torso R Arm L Arm R Leg L Leg
Raw Frames 0.70 0.72 0.56 0.49 0.46 0.42
Med Filter 0.98 0.98 0.83 0.69 0.90 0.82

TV Reg 0.98 0.94 0.77 0.68 0.86 0.86

VIII. DISCUSSION AND CONCLUSION

In summary, we have proposed and demonstrated an early
attempt at NLOS scene reconstruction and human pose estima-
tion in the long-wave IR spectrum. Going forward, we believe
that NLOS at long wave IR is an exciting prospect for two
reasons:
• The problem is simplified to one-bounce of photons, as

the object is a source of light; and
• Many surfaces are specular at long-wave IR wavelengths.

Object as a source of light (one-bounce problem): Recall
that in the visible spectrum, the hidden objects act as reflectors,
making NLOS imaging a two-bounce problem. However, in
this paper, the hidden object is a source of long-wave IR radi-
ation. This simplification allows NLOS imaging to be modeled
as a one-bounce problem. Moreover, if the temperature of the
object is known, the emitter radiance is easily estimated from
Stefan-Boltzmann’s law. We exploit this unique property of
long-wave IR for a novel NLOS reconstruction method that
can generalize to both 2D and 3D cases.

Narrow specular BRDF: From rough metallic surface to
‘diffuse’ whiteboard, various materials have dominant specular
surface reflection in the long-wave IR spectrum. This allows
us to recover the 2D shape of the hidden object easily while it
is challenging in the visible spectrum. With imperfect specular
reflection, the intensity of reflection changes as the distance
between the wall and the hidden object changes. We exploited
this for 3D localization of the hidden object.

Limitations and future Work: Our reconstruction algo-
rithm is limited to a planer object with a uniform, known long-
wave emission. For simplicity, we exploited that the blurring
due to the reflection of the wall is trivial due to the narrow
specular reflection to recover the 2D shape of the hidden

object. However, there is a still a small blurring due to the
reflection, and deblurring algorithms can be used to recover
the finer details of the object with a non-uniform temperature
profile. We observed that some materials exhibit specular
reflection, but low albedo, as seen in our pose estimation
results. While we showed that simple denoising makes the
pose estimation algorithm robust, denoisers for thermal images
can be designed to improve the accuracy.

Outlook and conclusion: We hope this paper inspires
new algorithms and light transport models across different
wavelengths. Going forward, one can imagine a sensor fusion
approach that combines the variation in BRDF across different
wavelengths to improve NLOS imaging performance. We
believe that long-wave IR could be the method of choice
to see around corners for many applications. Our results are
powered by the simplicity of a one-bounce problem and a
strong specular surface reflectance. Future work can build
upon such favorable physics to further realize the vision of
a camera that can see around corners.
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Fig. 11: Comparing BRDF models with real measurements.
(a)-(d) show actual and fitted simulation measurements of
reflection images of a disk heat source 12.7cm, 25.4cm away
from the wall. (b), (d) Beckmann and Phong distribution
model fails to explain intensity drop off near the center of
the reflection image.
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APPENDIX A: CHOICE OF ANALYTIC MODEL FOR BRDF

While the GGX specular BRDF model approximates the
measured BRDF well, other specular models such as the Beck-
mann and Phong model also fit the measured angle-varying
intensity. Fig. 11 compares actual measurements and fitted
simulated measurements. Beckmann and Phong distributions
fail to explain the intensity drop near the center of reflection
image when a disk heat source moves further away from the
wall. This motivated us to choose the GGX BRDF models for
long-wave IR.

APPENDIX B: COOK-TORRANCE MODEL WITH GGX
DISTRIBUTION

Eq. 7 is an analytic expression of Cook-Torrance BRDF
model [48]. Here, we elaborate each term of this equation
with GGX distribution [49]. The normal distribution function
D(~h, ~n), which is parameterized by ’roughness’ α, describes
distribution of microfacets on the surface:

D(~h, ~n) =
α2

π((~h · ~n)2(α2 − 1) + 1)2
(18)

The shadowing factor G(~l, ~v, ~h, ~n) describes shadowing of
microfacets, and is also parameterized α with Smith approxi-
mation:

G(~l, ~v, ~h, ~n) ≈ G′(~l, ~n)G′(~v, ~n),where

G′(~a, ~n) =
2(~a · ~n)

(~a · ~n) +
√
α2 + (1− α2)(~a · ~n)2

(19)

The Fresnel function describes the reflection intensity based
on the index of refraction. Because expression for the Fresnel
function is complex, we refer readers to [48] for the details.
For simplicity, we approximated Fresnel term as F (~v, ~h) ≈ 1
to fit the measurement for a narrow specular BRDF.

Fig. 12: Our reconstruction algorithm scales up to practical
scenarios. (a) Simulation setup in the scale of our experimen-
tal setup and practical scene. (b)(c) shows simulated intensity
measurements. When both objects and scene geometry are
scaled by a same factor, measurement doesn’t change. Hence,
our reconstruction algorithm should be applicable for scenes
at realistic scales.

APPENDIX C: SCALABILITY OF RECONSTRUCTION

Our experimental setup for BRDF-based NLOS scene re-
construction is in a small scale due to the availability of
the controlled heat source. Section VI-A discusses that depth
recoverability depends on the object’s size. Here, we simulate
a scene at two different scales – the scale of our experimental
setup and realistic NLOS scenario. The simulated object
temperature, ambient temperature, and reflectance were same
as the experimental setup.

Fig. 12 shows that the intensity measurements do not change
when both the object size and scene geometry are scaled by the
same factor. This is because~l, ~v and ~n are preserved with the
scaling. Hence, our reconstruction algorithm and experimental
validation should scale up to realistic scenes as well.


