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ABSTRACT

For centuries, humans have discovered the physical laws that underpin our world. What if the next Einstein or
Newton is not a human, but a machine? Machines that are physics-aware can transform a multitude of fields,
poised to enable unexpected and meaningful feats in science and engineering. In this paper, we survey methods
germane to the imaging sciences where we observe a very special convergence of a millennia of optical theories
with decades of digital photos.
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1. INTRODUCTION

Imagine if it was possible to teach machines to discover the laws of physics. Such a physics-aware artificial
intelligence (AI) can transform a multitude of fields, including the imaging sciences. Smart cameras could enable
cars to avoid collisions before they happen. A smart microscope can capture videos of patients and gain intuition
about the underlying biophysics of a pathology. Advanced algorithms may even discover new optical laws that
have eluded human understanding.

However, in order to realize physics-aware machines, we must work together in advancing progress in computer
vision. Although computer vision is one of the most impactful fields of artificial intelligence, the modern paradigm
of vision is not physics-aware. Existing algorithms largely tune knobs to parameters. Judea Pearl, a UCLA
colleague and Turing Award Laureate has been quoted as saying that ”the impressive achievements of deep
learning amount to just curve fitting”. These algorithms, curve fitting perhaps, then sit on top of ordinary
cameras, which capture a miniscule, two-dimensional projection of the trillions of light paths in a scene. As a
result, computer vision algorithms lack the sensitivity to detect subtle bio-signals, are easily fooled by spurious
reflections and material effects, and are easily fooled by adversarial attacks.

In order to overcome this paradigm, we must incorporate physics into the pipeline of Al, from the processing
of AI to the capture of sensory inputs for AI. The author is a member of the Visual Machines Group at UCLA,
where the aim is to combine physical insights and computer algorithms to transform imaging in ways that are
unexpected, yet meaningful. The group has a unique approach to computer vision, that extends all the way
down to the hardware and up to the algorithms. In what follows, we provide a survey of research in two areas:
physics-based vision and physics-based AI. We also provide an overview of nascent applications for imaging,
ranging from patient health monitoring to new types of long-range camera systems.

2. PHYSICS-BASED ARTIFICIAL INTELLIGENCE

We can divide research in physics-based artificial intelligence into two broad themes, depending on whether the
physics is known or unknown. The first theme assumes that physical laws are known, and aims to blend the
laws of physics with artificial intelligence. In contrast, the second theme assumes that the physics is unknown
and seeks to discover the laws of physics.
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Figure 1. Blending physics and learning often depends on the quality of physics and data. The “goodness”
of physics and data can be defined more precisely in context of training data or model mismatch. Figure from Ba et al.’

2.1 Blending Physics and Learning

Imagine if we are tossing a basketball and would like to estimate the trajectory—will it go in the hoop or land
short? Elementary physics can help us solve this problem, but our calculation may be off due to nuisance factors
like wind speed or backspin. If we have a multitude of training examples of basketball tosses, we can apply a
machine learning model to estimate the trajectory. Blending physics and learning is not new and dates back as
early to the Kalman filter.? However, we are now at the stage where deep learning models perform much better
than classical control algorithms for many problems.

To bridge this gap, the area of physics-based learning (PBL) aims to blend physical priors with modern
methods in machine learning, and in particular deep learning, to combine the best of both worlds. The subtlety
in these approaches of blending is to understand how to perform the blending in different regimes of physics and
data quality. As illustrated in Figure 1, if the physical model is very “good”, then a purely physical solution
could be used for the blending (e.g. the kinematic equations in the projectile example). In contrast, if the
data is “good” then a purely data-driven solution could be used for blending. Here, "goodness” is left open to
intepretation—it is often rigorously quantified in some manner, be it the amount of training data or a bound on
the degree of physical mimatch. The subtlety occurs in the green region of Figure 1, where data and physics are
both informative, but not perfect.

PBL architectures have achieved competitive performance with respect to naive neural networks, on a wide
variety of tasks in fields as diverse as computational microscopy,?©® low level and high level computer vision,!» "
and medical imaging.'® ' Unfortunately, these PBL methods are typically designed for a specific task, or regime
of Figure 1. Generalization would (as a first step) require a PBL architecture capable of adapting to variations in
the correctness of physics or the quality of training data. Experiments show that no such architecture exists, and
it is possible to approach this from a different angle as shown in Figure 2. Inspired by work in neural architecture
search (NAS),'?>1° Ba and Zhao et al. propose an attempt to automatically find the optimal PBL architecture
through a discovery algorithm known as AutoPhysics.!® This is an important step in adopting physics-based
learning to encompass the wide range of physical problems, where priors are only approximate and training data
can be sparse.

2.2 Discovering New Laws of Physics

The second theme is discovery, where the goal is to learn a physical model whose form and parameters are
unknown. The apocryphal story of how Newton discovered the laws of gravitation seeing an apple is fall can be
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Figure 2. A new method enables automatic selection of the blending between physics and learning. Ba and
Zhao et al. design a physics-based variant of neural architecture search to find the best performing manner in which to
blend physics and learning. Figure from Ba and Zhao et al.'®

transposed as a computer vision problem. Concretely, imagine a smart camera that observes a dynamic event
(e.g. the apple falling) and is able to deduce the physical laws (e.g. gravitation and Kinematics). If the discovery
problem can be scaled, it could perhaps aid in discovery of more complex physical models, such as scattering
phase functions, reflections distributions, and more.

Progress in discovering physical laws is still nascent. Most previous work achieves success akin to partial
discovery,'" 23 where algorithms are either able to discover governing equations or the parameters, but not both.
Recent work from Chari et al. takes a closer step toward full discovery.?* Here, the work takes only a video
sequence of bounding boxes as input (e.g. positional data) and is able to learn both the governing equation and
rest of the parameters (e.g. velocity and the gravitational constant). Figure shows a few elementary scenes from
their paper, where a network takes as input only video sequences and can discover projectile kinematics (linear
motion equations) or circular rotation (sinusoidal motion equations). However, these basic scenes are only a
starting point. The next frontier will be to scale this to more complex scenarios, and eventually, scale to the
unknown physical challenges.

3. PHYSICS-BASED VISION

Physics-based thinking can transform subfields of AI, such as computer vision. Ordinarily, computer vision
teaches machines how to see. The conventional method is to feed two-dimensional imagery I(z,y) into neural
networks, where x and y are spatial coordinates, either in pixels or meters.

Physics-based vision is a field that draws upon knowledge about the physics of how light forms an image to
solve long standing problems in computer vision, such as 3D reconstruction, object recognition, segmentation
and more. Progress in this area has been accelerated by thinking beyond the typical 2-dimensional matrix image
structure I(z,y) used in computer vision and image processing. One way to express the higher-dimensional
relationship is in integral form, where

twy) = [ [ [ [ [160.6.0200.00 061 avzandpa (1)
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Figure 3. Discovering physical laws from video streams. Work by Chari, Talegaonkar, Ba et al. introduce a way
to learn governing equations (e.g. projectile motion) and parameters (e.g. velocities) from video streams. The method
succeeds on elementary scenes, and it will be exciting to see how such techniques scale to complex physical phenomena.
Figure from Chari et al.?*

represents the low-dimensional projection I(z,y) used in ordinary computer vision and the set {61,602, A, p, t}
denotes additional parameters that are not sampled in conventional vision.?> These parameters include the two
light field angles, wavelength, polarization, and time, respectively. While an ordinary camera simply integrates
out diversity across angle or polarization, it is possible to modify the imaging setup to capture these dimensions.
Then, by sampling these additional dimensions of light, the art of physics-based vision involves linking higher-
dimensional image formation models (i.e. higher in dimension than 2D) to key tasks in computer vision. In what
follows, we review some work from the computational imaging community in probing specific dimensions of light
transport.

3.1 Probing the Temporal Dimension

Whereas an ordinary cameras simply counts the number of photons that strike a sensor pixel, research in
transient imaging seeks to understand also the timing of photons. The timing characteristics of photons can
be used in a classical sense, to obtain 3D shape (e.g. by using the time of flight principle). However, it can
also be used for meta-characteristics, such as transient imaging,263° the inference of material properties,!33
multipath analysis,?”> 283437 and even the ability to see around corners.3® 44

3.2 Probing the Polarimetric Dimension

Ordinarily, the camera model that is used in computer vision is polarization agnostic. In analogous fashion
to the previous subsection, recent work in computational imaging has leveraged the polarization of light to
realize extraordinary new capabilities. For example, the work of “Polarized 3D” by Kadambi et al.*>46 studies
how polarization cues can be used to upsample 3D images. The high-quality geometry, at nearly micron-scale
is shown in Figure 4 on the left-hand-side. More recently, Kalra et al.*” also leveraged polarization cues to
tackle transparent object instance segmentation. Transparent object segmentation is a hard problem because,
in an RGB image, the texture transmitted through the transparent object can overshadow the texture of the
transparent object itself. In polarized imagery, the amount of polarized light is measured. Since transparent
objects tend to heavily polarize light, they are able to observe the texture of the object itself. Leveraging
this, along with their custom deep learning framework, they are able to achieve segmentation robust to print-out
spoofs, novel environments, and use this for robotic bin picking of transparent objects. Polarization has also been
widely used for imaging through scattering media,*® 4% surface normal reconstruction,”® >3 face and reflectance
capture,®®®® underwater imaging,”® and even in combination with time of flight imaging.”” Recently, Tanaka et
al. introduced, for the first time, the use of polarization to see around corners.>®

3.3 Spectral

Leveraging the power of spectral information has been an important theme in physics-based vision. We highlight
a few examples germane to computatoinal imaging. Maeda et al.*? leverage the specular reflectance chracteristics
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Physics-based Vision Using Polarization Cues
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(Kadambi et al. ICCV 2015) (Kalra et al. CVPR 2020)

Figure 4. Harnessing the power of polarization cues to transform computer vision. At left is a geometric
reconstruction of a coffee cup at micron scale using polarization cues to upsample a depth map. At right is the use of
polarization cues to segment transparent objects while avoiding print-out attacks (where a picture of an object is used to
fool a vision system). Figures from Kadambi et al.*® and Kalra et al.*”

of long-wave infrared to see around corners. The strong specular behavior allows for drastic improvements in
shape resolution and reconstruction over existing visual methods. For the first time, the authors are able to show
reconstruction of a human silhouette around the corner. Along this theme, and although it does not use light,
it is worth mentioning the creative use of acoustics to achieve a similar effect of specular reflection by Lindell et
al.’? Other authors like Tanaka et al.,?* have introduced a novel time-resolved decomposition technique for far
infrared light transport, that exploits transience at the much slower speed of propagation of heat. This enables
certain transient imaging effects to be observed and analysed at video frame rates. Spectral imaging can also
be combined with programmable illumination, as inspired by Saragadam et al.’% who extend optical computing
techniques (analogous to®!) across the spectral band.

4. ENABLING EXTREME IMAGING USING PHYSICS AND Al

Putting physics and Al together provides a toolbox that can be used to transform imaging into extreme domains.
Here we discuss two directions of interest. The first pertains to the design of cameras for satellite imagers, and
the second for non-contact health diagnostics. A recurring theme is end-to-end learning of camera systems and
low level parameters, analogous to previous work in computational imaging.%2-65

4.1 Aerial Imaging

Today, satellite imagery is an important tool for many industries, including military, agriculture, construction
and real-estate. More-than-ever, the demand for precise, reliable and accessible satellite imagery is required.
Continuously pushing the boundary of satellite imaging, such as pushing the resolution limits to 0.1m, will spike
new applications in healthcare and computer vision.

However, the traditional design of satellite imaging systems strongly limits its current imaging capacity.
Typical satellite imaging systems are monolithic, with constellations acting as independent agents rather than
collaborative meta-sensors. Furthermore, optical hardware design choices are heuristic and not optimized for
image reconstruction and post-processing. Consequently, bulky and expensive systems are required to achieve
high-quality imaging with computationally intensive post-processing techniques, all while being inflexible to
adapt to new demands and physical scenarios.

To advance satellite imagery, our group is interested in looking at new forms of satellite perception hardware
with data extraction and reconstruction software (Figure b5). Leveraging advances in machine learning and
auto-differentiation, we enhance our design space to include the formation of satellites, sensor parameters, laws
of physics and active human inputs. By optimizing our hardware and software with user-defined application
constraints in an end-to-end manner, we hope to construct a cost-effective, adaptive and intelligent satellite
imaging system.
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Figure 5. An example of end-to-end imaging system design for imaging on satellites. In contrast to studying
the imaging system as an isolated unit, the entire input from satellite flight path to imaging focus point can be seen as
parameters. Autodifferentiation can learn the optimal combination of joint optical/aeronautical parameters.

4.2 Health

For population-scale screening, a single camera, placed in a busy area of a hospital, can photograph upwards
of 100,000 people a month. Although authors like Poh et al.®® have successfully leveraged cameras for vital
isgn measurements, ordinary cameras are somewhat limited. They cannot measure fever, for example, since
they do not detect temperature. It turns out that fever (elevated temperature) is an early indicator of illnesses
like cancer or infection. For instance, In the currently ongoing COVID-19 epidemic, hospitals do not have the
throughput to detect fevers of patients or medical staff because they were using low-throughput instruments to
measure temperature. One such device is the non-contact infrared (IR) thermometer, which works by measuring
the IR radiation emitted from a patient. Although accurate, these thermometers do not have the necessary
throughput to keep up with patient intake. A laser dot must be carefully aligned with the patient’s forehead
as the instrument outputs a single-point measurement. It is impossible to measure the temperature of multiple
individuals with such point-wise devices. Inspired by work from Nowara and colleagues,’”%® perhaps it may be
possible to one day have a thermal camera that can image a swath of people for triaging.

4.3 CONCLUSION

We believe the future of imaging will rely on practitioners who can jointly push the boundaries of artificial
intelligence and physics. A snapshot of work covered in this short report is not representative of the richness
of topics that can be studied in this umbrella. Focused review articles offer much more detail, and we point
the reader to Raghu et al.®? for a survey on scientific discovery, Willard et al.”® for a survey on physics-based
learning, Maeda et al.”! for a survey on non-line-of-sight imaging, and Bhandari et al.”? for a survey on time of
flight imaging. The author is currently writing a textbook on computational imaging, to be published by MIT
Press in 2020.
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